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ABSTRACT

Recently there has been a great deal of attention paid to the automatic prediction of tags for music
and audio in general. Social tags are user-generated keywords associated with some resource on the Web.
In the case of music, social tags have become an important component of ~“Web 2.0" recommender
systems. There have been many attempts at automatically applying tags to audio for different purposes:
database management, music recommendation, improved human-computer interfaces, estimating
similarity among songs, and so on.

Many published results show that this problem can be tackled using machine learning techniques,
however, no method so far has been proven to be particularly suited to the task. First, it seems that no
one has yet found an appropriate algorithm to solve this challenge. But second, the task definition itself is
problematic. In an effort to better understand the task and also to help new researchers bring their
insights to bear on this problem, this chapter provides a review of the state-of-the-art methods for
addressing automatic tagging of audio. It is divided in the following sections: goal, framework, audio
representation, labeled data, classification, evaluation, and future directions. Such a division helps
understand the commonalities and strengths of the different methods that have been proposed.

INTRODUCTION

Many tasks require machines to hear in order to accomplish them. In the case of music, we would
like computers to helps us discover, manage, and describe the many new songs that become available
every day. The goal is not necessarily to replace humans: the best description of an album is probably the
one of a music expert. That being said, it is now impossible for any group of experts to listen to every
piece on the Internet and summarize it in order for others to discover it. For example, let's consider an
online radio like Pandora (www.pandora.com) or Last.fm (www.last.fm). As a service, they provide
listeners with a personal continuous stream of music based on their musical tastes. In order to make
recommendations, they rely heavily on collaborative filtering: if a listener liked songs A and B and you
liked A, you might like B. Such algorithms have proven to be extremely efficient. However, it leaves two
major problems. First, what is often called the cold-start problem, the fact that new items entering the



system are not popular, hence never recommended, hence never popular. Secondly, some songs that start
as popular end up even more popular because they do get recommended. A machine that could
understand music as experts do would improve both situations.

Understanding music is a very general statement. In this work, we are interested in describing
music with appropriate tags (or labels, keywords), addressing the previous situation in a natural way.
Knowing a set of tags that applies to a song is in itself a description. One can also manage music by
grouping pieces that are described in a similar way. Recommendations can also be made from the space
of tags, e.g. one can identify that a listener like “rock” music with “female voices”. Note that on Pandora
and Last.fm, users can already browse music according to tags that were applied by other users. Once
again, we do not claim that machines would create better tags than human listeners. Automatically created
tags, or autotags, are useful for new or unpopular music, as well as for completing the set of tags applied
by humans. Describing music with a “bag of words” is the same approach taken by text search engines
that describe web pages using the words they contain. With the ability to create an appropriate set of tags
that applies to any given audio, we could develop as many tools as Google and Yahoo did for web
documents and change the way we handle music.

Many different groups have been trying to predict tags from audio, yet there have been few
attempts at uniting the community behind a clear shared task definition. This was partially addressed at
MIREX 2008. MIREX stands for Music Information Retrieval Evaluation eXchange, a set of contests
held each year at the International Conference on Music Information Retrieval (ISMIR). Throughout this
paper when we refer to a MIREX contest we mean the 2009 audio tag classification task, unless otherwise
mentioned. More information can be found at http://www.music-ir.org/mirex/2009/index.php/Main_Page.
Though we applaud the hard work of the contest organizers, there is room for improvement. For
example, the contest could have been more clearly defined in terms of evaluation and we discuss it later
on in this chapter. One goal of our review is to bring together the many proposed evaluation methods and
work towards a common framework for evaluation. In addition we hope that this effort will help bring
new researchers into this area by offering them a clear set of goals.

Note that the lack of a common goals does not mean that learning tags have been useless so far.
For instance, Eck et al. (2008) and Barrington et al. (2009) both showed that automatically generated tags
can improve music recommendation. Also, Turnbull et al. (Turnbull, Barrington, Torres & Lanckriet,
2008) explain how to manage a sound effect database using automatic tagging.

This chapter focuses on automatic tagging of music. However, regarding the vast and diverse set
of tags that have been used and the absence of prior knowledge assumed on the audio, this work addresses
tagging of audio in general. For instance, someone working on a speech versus music classifier should
also find the following methods and algorithms interesting.

Human tags

We presented the goal as finding a set of descriptive tags for given audio frames, but it is
important to first understand how humans tag audio. We often call them social tags as they are applied by
humans on some collaborative platform, as opposed to tags produced by an automatic tagging algorithm.
The different tags obtained are better understood when we know why people tag in the first place. Lamere
lists six reasons (Lamere, 2008) that we summarize here:

e Memory and context — items are tagged to assist personal retrieval, e.g. having access to all “pop”
songs in a database.

e Task organization — items are tagged to assist in the organization of music discovery tasks, e.g.
tag a new song “check out” or create a future playlist of “emo” artists.

e Social signaling — items are tagged as a way for an individual to express their tastes to others, e.g.
the use of the tag “seen live”.



e Social contribution — items are tagged to add to the group knowledge, e.g. a metal fan tagging a
song “not metal” if it is not considered truly metal.
e Play and competition — items are tagged as part of a game, more details in the Sources of Data
section.
o Opinion expression — items are tagged to convey an individual's opinion, e.g. the use of the tag
“awesome”.
The types of tag themselves can be associated with a few categories, see Table 1. Finally, here is specific
example of tagging of the band The Shins in Table 2.

Tag Type Frequency Examples
Genre 68% Heavy metal, punk
Locale 12% French, Seattle,

NYC
Mood 5% Chill, party
Opinion 4% Love, favorite
Instrumentation 4% Piano, female vocal
Style 3% Political, humor
Misc 2% Coldplay, composers
Personal 1% Seen live, I own it
Organizational 1% Check out

Table 1: Distribution of tag types on Last.fm (in 2007)

Tag Freq Tag Freq Tag Freq
Indie 2375 The 190 Punk 49
Shins
Indie 1183 Favorites 138 Chill 45
rock
Indie pop 841 Emo 113 Singer- 41
songwrite
r
Alternati 653 Mellow 85 Garden 39
ve State
Rock 512 Folk 85 Favorite 37
Seen live 298 Alternati 83 Electroni 36
ve rock C
Pop 231 Acoustic 54 Love 35




Table 2: Top 21 tags applied to The Shins on Last.fm (in 2007)

In this paper, we present how to learn to apply similar tags to audio based on human tagging
examples as the ones in Tables 1 and 2. We can already highlight a limitation of automatic tagging
systems based on audio, unlike humans they could not learn to apply tags like “seen live” and “love”
since there is no correlation with the audio itself. However, tags being categorized as genre, mood, and
instrumentation are within an algorithm's reach.

Definitions

A tag is a user-generated keyword associated with some resource, in our case audio. In general
we tag audio tracks (or segments of a track) but we will also talk about tagging albums or artists by
aggregating predictions made over tracks. Tag and label are used interchangeably. Autotag is a short
name for a label applied to some audio by an automatic tagging algorithm. We may refer to an automatic
tagging algorithm as an autotagger, but we must be careful as that term as been used for a specific
algorithm in Bertin-Mahieux et al. (2008).

FRAMEWORK

One goal of this paper is to provide a unified view of all automatic tagging systems for audio that
are currently being investigated. These systems can be decomposed into four parts: audio representation,
tagging data, machine learning algorithm and evaluation (see Figure 1). Evaluation is included as a full
part of the system as it has impact on the way the machine learning algorithm is trained. For instance one
might use a different algorithm to train a model evaluated for artist similarity prediction than for
precision/recall of tag vocabularies. Regarding machine learning algorithms, the term must be understood
here in its most general definition, as a function that takes an input and produces an output depending on
the input. In the case of automatic tagging, an algorithm can be viewed as a “machine” that takes a piece
of audio, and a set of tags, and decides which tags apply and eventually to what degree. Classification can
be seen as the case where the degree must be either O or 1.
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Figure 1: Overview of an automatic tagging algorithm
for audio

Learning

Algorithm Evaluation

The next sections follow the four parts of the framework. An algorithm can be described by how
it deals with each of these parts: what audio features and tagging data it uses, what learning algorithm is
used, and how performance is evaluated. Choices for each part can usually be made independently of the
choices in the other parts.



AUDIO REPRESENTATION

We briefly discuss the vast area of representing audio, as it is always an issue when applying
machine learning techniques to sounds. Let's start by stating the obvious: there is no one single best
representation that will work in all cases. Furthermore, it is difficult to know in advance which
representation will work with which technique. In this section we present the most typical approach,
which is to mix together many representations. We present some specific choices that were made in
recent papers on automatic tagging of audio. For an introduction to audio features or specific details on
the implementations, we refer the reader to the future reading section.

Bag of frames

The “bag of frames” representation is an analogy to the term “bag of words” in the text search
community: to describe a text document, one keeps a vector of word counts from that document,
disregarding the order in which the words appeared in that document. In the case of audio, for each
“frame”, one computes one or many features, which are considered in a collection that ignores their order.

An example of a bag of words setting would be the following approach: for each 100 ms of audio,
compute the following features: fourier transform, mel-frequency cepstral coefficients (MFCC),
chromagrams, autocorrelation coefficients, delta MFCC, zero-crossing rate. Each of these features can be
seen as a vector of size at least 1, and all are simply concatenated. Another specific example from
(Turnbull, Barrington, Torres & Lanckriet, 2008), authors use MFCC, delta-MFCC and delta-delta-
MEFCC on 10ms-length frames.

In the bag of frames representation, these features are then aggregated over longer durations.
One simple aggregation technique is taking the mean and possibly the variance of each dimension of the
previously created vectors. This has merit when dealing with frames of length 1 to 10 seconds. The
intuition is that, for automatic labeling, the occurrence of an event is of interest but not necessarily its
time stamp. A time division up to 100 or 10 ms can therefore be too much precision, but this property
always has to be verified empirically. Aggregate features were successful for music genre classification in
Bergstra et al. (2006).

Future reading

A complete description of typical audio features for Music Information Retrieval applications can
be found in Aucouturier & Pachet (2003) or Gold & Morgan (1999). A more recent approach is the one of
sparse coding, i.e. use representations that better compress the information into a few values. For work on
sparse coding in the frequency domain, see Plumbley et al. (2006) and Gardner & Magnasco (2006). For
work in the time domain, see (Grosse et al. 2007; Manzagol et al., 2007; Smith & Lewicki, 2006). For
commonly used features, one can use the two following toolboxes that are freely available online: MIR
toolbox  (http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox) and jAudio
(http://jmir.sourceforge.net/jAudio.html). Some companies even offer to analyze audio online and
provide you with features, e.g. the Echo Nest (http://www.echonest.com).

OBTAINING LABELED DATA

More specific to our task than representing audio is finding a proper dataset of labeled
<audio,tag> pairs. As we explained in the introduction, the tags applied by humans are of great quality.
The machine learning assumption is that if we show an algorithm enough examples, the correlation will
become clear. However, the following trade-off remains: gathering more examples help, but we usually
need to explore less reliable sources to do so. For instance, tags applied by music companies are usually
of little value since they are chosen according to commercial interests instead of the music itself. The



ultimate goal would be to have a large set of examples that is “clean” at the same time, i.e. that could
have been created by a human expert. There have been many attempts to build datasets, and (Turnbull,
Barrington & Lanckriet, 2008) presents them as five possible sources. In the following section, we will
follow Turnbull et al. and present the first four sources (the fifth one refers to automatic tagging, the
purpose of this paper). Then, we discuss the size of the available datasets and their implications. Finally,
we briefly present different ways to “clean up” the tagging data and arrange it in either a classification or
regression setting for the machine learning algorithm. The number of tags to be learned simultaneously is
also problematic.

Sources of Data
We follow (Turnbull, Barrington & Lanckriet, 2008) and present four sources of data.

Survey. Most straightforward and costly method, one can ask people to listen to songs and tag
them. One problem usually arises, either the participants are paid, or there are not enough of them. The
CAL lab at the University of California in San Diego (UCSD) paid undergraduates to fill out a survey, the
resulting dataset CALS500 is available online (Turnbull, Barrington, Torres & Lanckriet, 2007). It consists
of tags applied to 500 songs by an average of approximately 3 listeners. The vocabulary (set of possible
tags) was fixed by the survey. Later in this section we talk about obtaining tag data from games. This
overcomes many of the survey problems, participants fill the survey because of a reward (winning), but
the reward is non monetary, hence acquiring data is not as costly.

Social tags. Tags applied by human users. Last.fm is an online radio that enables users to tag an
artist, an album, or a song through a webbrowser or a donwloaded client. By the beginning of 2007, the
database contained a vocabulary of 960,000 free-text tags and millions of songs were annotated. Last.fm
data is available through their Audioscrobbler service page (Audioscrobbler). Last.fm, provides the
largest freely available collection of tagging data, but other data available from the web exist, including
MusicBrainz (http://musicbrainz.org). Last.fm data have been used or described in (Eck et al., 2008;
Lamere, 2008; Mandel & Ellis, 2008b) .

Game. Different tagging games have been developed by research teams to gather clean data (Kim
et al, 2008; Law et al., 2007, Mandel & Ellis, 2007; Turnbull, Liu, Barrington & Lanckriet, 2007). The
idea is to give users an incentive to apply appropriate tags to songs or song snippets. For instance, in
MajorMiner (Mandel & Ellis, 2007), users get points if they are the first or second person to use a tag on
a particular excerpt. This avoids usage of random, unrelated, or mischievous tags. Cheating is always
possible, but there are ways to counter it, usually by tracking a user behavior over some time. Data
acquired this way are usually very clean, but still many orders of magnitude smaller in size than social
tags. The largest game data available has been released by the Magnatagatune team
(http://tagatune.org/Datasets.html) and contains tags applied to about 20,000 songs.

Web documents. A fourth idea is to use documents available on the Internet to describe audio.
Celma et al. (2006) crawls MP3 blogs to obtain tags. For instance, one could search for words that are
more often associated with a particular artist than with an “average artist”, and use it as a tag. One can
easily gather millions of tags, but the main drawback of this method is the noise in the data. Other
approaches include querying search engines (Knees et al., 2008) and mining music websites (Whitman &
Ellis, 2004).



Size of Datasets

Following what we saw as the different sources of tagging data, we emphasize the question of the
size of the dataset. These days, the choice can be summarized into small and clean versus large and
noisy. A typical small and clean data would come from a game, and a typical large and noisy dataset
would be Last.fm data. To help clarify the choice and its implications, let's focus on the two following
questions:

o What is the application? If the goal is to build a new online music recommender based on tags,
the choice is obvious, the data has to be large. No performance obtained on small datasets can be
guaranteed in a real life setting of millions of songs. However, if the goal is to classify a set of
songs into 10 or 20 categories, it makes sense to learn these categories on very clean,
unambiguous data, even if we sacrifice the size.

e What is the algorithm? We will discuss in the next section the different algorithms used for
automatic tagging, but it is clear that some are more suited than others for a particular size of
dataset. Algorithms like the support vector machine (SVM) classifier can be trained well on small
datasets, but their training time is on the order of the square of the number of examples. On the
other hand, algorithms such as neural networks with stochastic gradient descent can be trained on
very large datasets, but can be defeated by too few examples. If a specific algorithm must be used
(for research purpose for instance), choosing a proper dataset size is essential.

The authors believe that most of the future applications will rely on large datasets, a trend already seen in
image information retrieval, e.g. in (Li et al., 2006). The incredible amount of data should overcome the
inherent noise, except for some specific task where the classification is expected to be clear and very
accurate. This is rarely the case in real life, a sound can be tagged in various ways, and the tagging can
change with context and over time. We encourage new researchers to mine web documents and make
extensive use of available datasets like Last.fm. We also hope that in the end, online games will produce
larger and more reliable datasets. Magnatagatune (tagatune.org/Magnatagatune.html), a recently
published tagging dataset of 20.000 audio songs, is a step in the right direction.

Cleanup of data

Here we mention different heuristics one might want to use to improve tagging data. No dataset
coming from the four sources we described can be efficiently used “out of the box”. Furthermore, the way
the data is prepared has to be consistent with the task at hand, the machine learning algorithm, and the
evaluation method. For instance, if a band like Radiohead has been tagged ten thousand times more often
than others, should the algorithm see ten thousands time more often audio coming from Radiohead?
Another example, some tags are synonyms, or the negation of one another. Should they be combine into
one label, and do we penalize the algorithm during learning if it predicts a synonym instead of the tag it
has seen?

The first thing is to select the vocabulary. As we mentioned, Last.fm data has approximately one
million different tags. Since it would be unlikely for anyone to try to learn them all, a subset has to be
chosen. Eck et al. (2008) simply take the most popular tags (the one applied the most) on Last.fm. It is
straightforward, but sometimes misleading. For instance, many listeners tag songs as “favorite” so they
can make playlists out of their favorite pieces. Unfortunately, no algorithm should be able to learn such a
tag unrelated to the music itself. A better list of tags to be used would be the tags people use to search for
music. A user can search for “R&B” music, but he has no reason to search for “favorite” music unless it is



his own. The list of tags used for search is therefore cleaner and probably more useful to learn. Another
method is also described in the Future reading section.

Another thing to be careful about is popularity bias. Some artist or songs are more popular than
others, hence more frequently tagged. Additionally, some tags are more popular than other, hence more
frequently applied. This bias appears in data coming from social tags or web documents, and to some
extent in games data (tag popularity). Easy examples would be Radiohead versus most of the existing
artists, and “rock” versus “japanese ska”. One can decide to either leave the data as it is, or to try to
reduce the bias, usually with the hope of helping the learning algorithm later on. See future readings for
pointers.

Organization of data

We discuss the last two essential choices that must be made: should the data be presented as a
classification or regression? Then, should the tags be learned one or many at a time?

A classification implies a set of binary questions: does this tag apply to this audio, yes or no.
With a regression, the question becomes: to what degree can this audio be described by this tag? In the
real world, there are few cases where a belonging can either be 100% or zero. It is especially true for
genre tags for music, where songs never belong to only one. Thus, a regression setting is the natural
choice for an automatic tagging algorithm. There are many ways to transform a tagging dataset into a
regression dataset. If it comes from a survey, one can take the percentage of people that tagged a song
with a particular tag.

There are two major reasons to transform a tagging dataset into a classification dataset: 1) it is
easier for a learning algorithm to find a proper class than a proper belonging value, and 2) values one gets
for pairs <audio,tag> can be extremely noisy, transforming them into a classification can mitigate the
noise. An example where the value <audio,tag> can be too noisy to be used is the CAL500 dataset
(Turnbull, Barrington, Torres & Lanckriet, 2007). Most of the songs are listened to by 3 people. If we
would take the proportion of listeners that tagged a song “rock” for instance, the numbers could only be 0,
0.33, 0.66 and 1. Obviously, the granularity does not account for real life and the number of listeners is
not large enough to be confident in the value. To transform a regression dataset into a classification
dataset, we usually use a threshold. In the case of CALS500, the authors suggest that we consider that a
tag was applied to a song only if 80% of the listeners agreed. If the amount of data is large enough, e.g.
coming from Last.fm or web documents, you can use rankings to determine if a tag applies to some audio
or not. Eck et al. (2008) consider that a tag was applied only to the top 10 artists the most related to the
tag (according to TFxIDF, described in the next section). The other applications of the tag were ignored
or discarded.

Regarding the number of tags to be learned simultaneously, we can safely say that in theory, the
more the better. Tags often share mutual information, e.g. the use of the tag “r&b” indicates that the tag
“hip hop” will probably be applied as well. Learning a set of tags instead of one enables us to use those
correlations in addition to those coming from audio features. That being said, the vocabulary can be a
very large set, and can even grow with time. Not every machine learning algorithm can handle multiple
outputs, and the computational complexity often grows accordingly. Another practical restriction is the
use of cloud computing: if we learn one tag at a time, one can launch N learning tasks on N processors.
Thus, the learning of the whole vocabulary scales inversely with the number of CPUs.

In the literature, Turnbull et al. (2008), Eck et al. (2008), and Mandel & Ellis (2008a) learn tags
independently, and Trohidis et al. (2008) learn them simultaneously.

Future reading

Another method for selecting tags to be learned is described in Torres et al. (2007) and involves
Canonical Correlation Analysis (CCA). CCA is especially designed to find dependencies between two



datasets living in different but related spaces. The two spaces here are the audio features and the tagging
space. The idea is that a tag is meaningful if it is linked to some audio event (seen in the features). From a
practical point of view, it amounts to choosing a vocabulary that can probably be learned.

Regarding popularity bias, few papers face this problem directly, mostly because published
results often come from small datasets. We mention Eck et al. (2008), which uses term-frequency,
inverse document-frequency (TFxXIDF) to approach the issue. TFXIDF come from the text search
community that deal with documents of different lengths and words used with varying frequency in a
particular language. Seeing artists (or songs) as documents and tags applied to them as words of these
documents, TFXIDF produces a value of how much a tag is particular to a given artist (or song). This
problem could also be seen as bd-matching where we try to associate users to products. Each user has to
be associated with b products, and each products associated with d users. The framework fits the
popularity bias we face, but its application to tagging data is ongoing research. Huang & Jebara (2007)
present a bd-matching implementation example.

Note that the TFXIDF method can be used to get a score in order to transform the data into a
regression setting, the value to predict is TFxIDF's ouput.

MACHINE LEARNING METHODS

The central part of any automatic tagging algorithm is the model that links tags to audio features.
Being as general as possible, any method that finds (possibly highly complex) correlations between the
two can be seen as a machine learning algorithm and be applied to automatic tagging. Such a large
research field is impossible to cover or summarize. We will focus on three algorithms recently used for
this task. For a general introduction to the field, or for pointers to other interesting algorithms, see the
future reading section.

We split machine learning methods into two classes: classification methods, and regressions and
probabilistic methods. This refers to the kind of output the methods learn to produce, and it is a typical
division between supervised learning methods. It is appropriate here since, as we saw before, our tagging
data can exist as one or the other.

Classification Methods

Support vector machines (SVMs) are one of the most widely used machine learning algorithms,
and have been applied in M. Mandel's papers to automatic tagging. Their performance as a classifier has
been demonstrated and they can also handle regression, but a concern with it is the training speed, which
is of order N*, N being the number of examples (audio frames here). Mandel & Ellis (2008a) use SVMs
in a multiple-instance learning framework (Dietterich et al., 1997) In this framework, supervision for
training is provided not at the level of clips, but of at the level of collections of clips (e.g. tracks, albums,
or artists), and the classifier's job is to predict whether a classification is relevant to each of the clips in
that collection and to clips in a separate test set. For music, if an artist is tagged with “saxophone”, some
of their clips should contain saxophone, but not necessarily all of them.

Boosting is a meta-algorithm in the sense that it works on top of other learning algorithms. For
now on, we discuss boosting single-stumps, i.e. a decision tree with two leaves. Boosting has been used
by the Gamme lab at the University of Montreal, first for genre classification (Bergstra et al., 2006), then
for automatic tagging (Bertin-Mahieux et al., 2008; Eck et al., 2008; Kegl et al., 2008). In an iterative
way, boosting finds the best possible classifier (in the set of all possible single-stumps) and adds it to a
“strong classifier”. It then reweights the examples so that classifying the hard ones is more rewarding. As



single-stumps see only one dimension at a time, the information contained in those dimensions must be
highly relevant. Hence, the authors used boosting in conjunction with aggregate features. Boosting
training time scales linearly in the number of examples.

Regression and Probabilistic Methods

We already mentioned SVMs and neural networks that have extensions to handle the regression
case. It is also the case for k-Nearest Neighbors (kNN), but it has been rarely used in the literature. We
now focus our attention on the method used by the CAL group at UCSD (Turnbull, Barrington, Torres &
Lanckriet, 2008).

Gaussian mixture is a learning algorithm that models a distribution using gaussians. In our case,
audio frames are a point in the features space and we model their position. The assumption is that, if a
new point (audio frame) is close in the feature space, it should be tagged the same way. The advantage of
the Gaussian mixture model is that it gives a probability, i.e. the probability that a tag X was applied to an
audio frame F. Gaussian mixtures are trained using the well-known EM algorithm (Bishop, 2006).
Gaussian mixtures are more powerful (in terms of representation capacity) than an algorithm that only
classifies because it estimates the likelihood of a data point. The drawback of such methods is that, if the
goal is to be discriminative, resources are spent modeling the data. Specifically, if two classes are 99%
the same, the generative approach tries to model each class and probably ignores the 1% difference
between them, while the discriminative approach focuses on that 1% that is different. Another
disadvantage is that training Gaussian mixtures are extremely demanding in computational resources as
soon as the number of audio frames get large.

To overcome the computational complexity, Turnbull et al. use the Hierarchical Gaussian
mixture model (HGMM), a method introduced for vision in (Vasconcelos, 2001). The idea is to train
Gaussian mixtures on a subset of audio frames, for instance all frames from one song. This gives a single
Gaussian mixture per song, meaning 500 Gaussian mixtures for the CAL500 dataset. Vasconcelos
showed how to approximate all these mixture by a new Gaussian mixture. This divide-and-conquer
approach is very efficient.

According to MIREX 2008 results and some comparisons done in (Bertin-Mahieux et al., 2008),
HGMM seems the better performing algorithm for automatic tagging of music until MIREX 2009.
However, Bertin-Mahieux et al. raise concern about the small size of the datasets that were used for the
comparisons as it could favor HGMM.

Future reading

For a complete introduction to the machine learning field, we refer the reader to (Bishop,
2006) or (Duda et al., 2000).

K-nearest neighbors (KNN) is one of the most simple, and surprisingly effective, machine
learning techniques. Due to its simplicity, KNN should be a first comparison again any new tagging
algorithm. KNN has been used in (Sordo et al., 2007) to explicitly propagate labels among neighbors,
neighbors being derived from audio features. See also (Cano & Koppenberger, 2004).

Trohidis et al. (2008) discuss four algorithms to classify audio into emotions. Three algorithms:
binary relevance (BR), label powerset (LP), and random k-labelsets (RAKEL) are taken from their
previous work (Tsoumakas et al., 2007) and MLENN is described in (Zhang & Zhou, 2007). These are
interesting methods because they aim at directly predicting a subset of classes. In our audio case, it could
mean they build a predictor from a set of audio features to the subset of tags {“rock”, “metal”,
“hardcore”}. These algorithms are clearly of interest, but since their relatively poor results in the MIREX
2008 contest, their application must be refined for audio and automatic tagging in particular.



Neural networks have not been been used in recent papers on automatic tagging of audio, but
there is no reason why it would not work efficiently. In particular, it handles multi-label classification and
regression cases, and new developments in the field (Bengio et al., 2007) allow the use of very large
networks, hence possibly capturing highly complex relations between audio and tags. Neural networks
have been used successfully for music genre classification in (Bergstra, 2000)..

Finally, Bergstra (2006) does a review of algorithms that have been used for genre classification
and all of them have potential for automatic tagging.

As the size of datasets increases, algorithms need to scale efficiently. Online algorithms
are trained by seeing only a few examples at a time, thus avoiding the need of an increasingly
large memory. For online learning versions of some of the algorithms we presented, see (Bordes
et al., 2005) (SVM), (Bradley & Schapire, 2008) (boosting) and (Declercq & Piater, 2008; Song &
Wang, 2005) (gaussian mixture model).

EVALUATION

Evaluation may be the most problematic part of the automatic tagging of audio task. We can be
more general and say that the task definition itself is problematic, and that is why the community has not
agreed on a set of measure functions. We gave the goal of having a machine that can describe music the
same way a human expert would. Thus, the perfect evaluation would be to have human experts grade the
quality of the autotags produced by different algorithms. Unfortunately, such an evaluation is often
impossible in practice, and other evaluation measures need to be used as an approximation for the
judgment of an expert.

We split evaluation measures into three categories : direct measures, indirect measures, and
human evaluation. Direct measures are tightly related to the machine learning setting. For instance,
classification accuracy for a classification task or mean squared error for a regression task. Indirect
measures imply using autotags in a model for another task, and measuring how well the model performs.
For instance, what is the quality of recommendations based on autotags? Finally, human evaluations
involve humans asserting the quality of the autotags.

Although the separation between the three types of evaluations is not always crisp, it helps
questioning the results reported so far in the literature.

Direct Measures

A first measure, especially easy to compute if the problem is posed as a classification, is
classification accuracy. It is the percentage of songs that were correctly identified as being tagged or not
tagged with a particular label. We often see the two numbers presented separately, as the number of songs
tagged and not tagged are usually very unbalanced. Also, for some applications, not predicting a label is
not as penalizing as predicting a wrong label. Therefore, classification accuracy for positive examples
(song being tagged) and negative examples (song not being tagged) should be analyzed independently.

This leads us to precision and recall (Figure 2), a pair of measures that tries to analyze similar
aspects but from a retrieval point of view. More specifically, it asks the two questions: when I ask for a
song with tag X, how often do I get one correctly? Then, can I get all songs tagged with X? One aspect
can be more important than the other depending on the goal. Precision measures how often we tag a song
with the correct label. Recall measures the fraction of relevant songs that are correctly identified.
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Figure 2: formulas for precision and recall

Good recall avoids having an algorithm that never tags anything in order to avoid a mistake. However, if
a user is looking for a “rock” song on the internet, he does not care to get billions of them, but the ones he
receives should really be “rock”, thus precision is predominant.

One usually wants a good combination of both precision and recall. We might also want to
compare algorithms according to both, F-measure is the average of precision and recall. Two other
methods are presented in the future reading section.

The problem is that all these measures represent slightly different aspects of a good tagging
algorithm. We can either select one of them as a community standard and ignore the rest, use a large
number of them and get overwhelmed with data (often contradictory), or devise new and more rounded
methods of measuring a model's performance. We discuss the latter in the next subsections.

Indirect Measures

We have seen measures that are closely linked to what the algorithm is trained to do, for instance
classification accuracy. These are not the only way to state whether our autotagging algorithm produces
pertinent labels or not. We can use tags, and autotags, in derivate tasks and see if both perform as well.
Eck et al. (2008) use tags to compute a similarity measure between artists and compare it against a ground
truth similarity. Note that it is far from obvious how to build a ground truth similarity metric and they
actually rely on one that is “good enough”, details can be found in their paper. At the end, Eck et al. can
claim that autotags do not perform as well as real tags, but clearly better than random. Thus, autotags
“have merit”. Other derivative tasks can easily be imagined. If one has access to an online radio station
like Last.fm, one could look at user satisfaction with their recommendations when they search for a song
by tags. Derivative tasks also enable us to add a human in the evaluation loop, and that is what we discuss
in the next subsection.

Human Evaluation

The most direct human evaluation is to set up a panel of experts, or simply a large survey of
individuals, and ask them to rate how appropriate a tag is for a particular song. If one started from clean
data (from a survey for instance), one can hide some entries during the training of our algorithm and then
test how likely the test entries are according to our model. However, there is one major limitation with
this method. It is quite easy to find positive examples, i.e. a tag that was applied to a song. It is harder to
determine that a tag should not have been applied to the song. The test set from a survey data is therefore
half complete, and we still need a human to evaluate the output of an automatic tagger.

Here is a specific example of what we just said. Consider the band U2. It has obviously been
tagged with “rock”. Thus, if an algorithm produces that tag for a U2 song, one can mark that as a success.
Next, assume that the algorithm produced the tag “country”. This does not fit perfectly the style of U2,
but it is closer than “rap” for instance. If none of these tags were applied by listeners, both would be
penalized the same way. However, a human judge would prefer an algorithm that decides that U2 is more
“country” than “rap”. This illustrates the need for a human evaluation.

Setting up a panel to judge algorithms is difficult, as they are required to tag thousands or even
millions of songs. A very promising approach, already considered in the section about obtaining labeled



data, is to use a game to encourage users to becoming judges. E. Law suggested we modify the Tagatune
game for that purpose (Law, 2008). In Tagatune, two players listen to a song simultaneously and the goal
is to determine if they are listening to the same one. Players are only allowed to communicate by typing
labels which are visible to both of them and must make their decision based on these tags. If an automatic
tagging system outputs appropriate tags, it should enable a human partner to decide if he is listening to the
same song or not. Hence, the algorithm that yields the best average score for its human partners is
considered the most accurate of all models. As we are writing, this evaluation experiment is underway,
with many submissions from MIREX 2008 automatic tagging contest (Law et al., 2009).

Concerns about Current Evaluation Methods

Many researchers in the field feel we did not find the proper evaluation methods for automatic
tagging, most of these concerns are expressed in (Law, 2008). We try to summarize the main arguments
here. Classification accuracy is somewhat irrelevant if the testing data are noisy. One can always argue
that, as long as the training and testing data come from the same distribution, the noise becomes part of
the task and the evaluation is valid. That being said, when we consider that non only are the data noisy,
but they are overwhelmed with negative examples (tag X was not applied to audio frame F), the
confidence in the test set gets very low. The U2 example applies here, the fact that U2 is tagged neither
“country” nor “rap” does not mean that both predictions are equally wrong.

Precision and recall are more relevant to actual applications of an automatic tagger. In particular,
for an online radio like Last.fm, it is important to provide a “pop” song or “ska” song to a user that asked
for that genre. Precision measures exactly that, and we argue that it is more important than recall in most
real-life applications.

All tags are not born equals, and some are more popular than others. Turnbull et al. find
that the most useful tags are the one that are neither the most popular nor the most obscure. Thus,
we should consider evaluation methods that take the popularity of tags into account, but this is
extremely difficult to do. For MIREX 2008, the beta-binomial model (Gelman et al., 2003) was
used and one of its properties is to put more weight on tags that are better represented. According
to Turnbull et al.'s finding, this can be problematic.

Finally, as we mention before, the size of the datasets is problematic. If the goal is to
create a program that can be implemented on a very large scale like the Internet, one needs to
measure the performance of algorithms on very large datasets. This has not been the case so far
and it is likely to remain a problem for the years to come. Fortunately, indirect and human
evaluations like we presented have the potential to circumvent the matter.

Future reading

Another direct evaluation measure is Area under the Receiver Operating Characteristic curve
(AROC). AROC assumes that, for a tag X, you can order songs by how much they should be tagged with
X. AROC computation can be found in numerous papers, for instance (Turnbull, Barrington, Torres &
Lanckriet, 2008). Many of the concerns expressed above have been explored by the search engine
community. We recommend the work of Herlocker et al. for a complete overview (Herlocker et
al., 2000; Herlocker et al., 2004).

THREE PUBLISHED IMPLEMENTATIONS

In this section, we present three approaches that have been successfully implemented and
published recently. According to the results of the 2008 MIREX contest on automatic tagging, they also



appear as the three best performing algorithms. We can therefore consider them as the state-of-the-art and
a reference point for future research. Then, we briefly presents the MIREX 2008 results according to one
measure, F-measure. The full results are available online and are too detailed to be presented here.

UCSD - CAL

A first successful implementation was done at the University of California in San Diego in the
Computer Audition Laboratory (CAL) headed by Professor G. Lanckriet.

The feature they use are MFCC, delta-MFCC and delta-delta-MFCC over frames of
approximately 23ms. The tagging data comes from CAL500 dataset. The machine learning algorithm is
hierarchical gaussian mixture. Evaluation is done with precision / recall and AROC.

Publications about this work are: (Turnbull, Barrington, Torres & Lanckriet, 2007; Turnbull,
Barrington, Torres & Lanckriet, 2008).

Columbia - LabROSA

A second method was developed by M. Mandel at Columbia in the Laboratory for the
Recognition and Organization of Sound and Audio (LabROSA) headed by Professor D. Ellis.

The features used are the mean and unwrapped covariance of MFCCs and rhythmic features that
measure modulations in a few gross frequency bands. The training data comes from the MajorMiner
game. The machine learning algorithm is SVMs. Evaluation is done by measuring the classification
accuracy on a test set with the same number of positive and negative examples, ensuring a constant
baseline of 50%.

Publications about this work are: (Mandel & Ellis, 2008a; Mandel & Ellis, 2008b).

University of Montreal - GAMME

A third method was investigated at the GAMME laboratory headed by Professor D. Eck and in
collaboration with Sun Microsystems (Search Inside the Music project, main researcher was P. Lamere).

The features used are aggregate spectrograms, MFCC and autocorrelation coefficients. The
training data comes from Last.fm. The machine learning algorithm is multi-class boosting of single
stumps. The evaluations include classification accuracy and artist similarity.

Publications about this work are: (Eck et al., 2007; Eck et al., 2008; Bertin-Mahieux et al., 2008;
Kegl et al, 2008).

Results of MIREX 2008 Audio Tag Classification Task

In Table 3 we present the results of MIREX 2008 according to the F-measure. The complete and
detailed results are available online. The first three teams are the implementations we presented above.
Note that the “Smurf” team is a sort of control submission. The algorithm always tagged any audio with
the most popular tags. The number of tags output was previously optimized to maximize the F-measure
on a training set similar in size to the one used at MIREX. Also, the entry from G. Peeters was a generic
algorithm which was submitted to all MIREX tasks, thus it was not optimized for automatic tagging.

Team Algorithm
UCSD HGMM
Columbia SVM




University of Montreal Boosting
Smurf Tag popularity
Geoffrey Peters ircamclassification (generic)
Trohidis et al. RAKEL / MLANN

Table 3: Submissions to MIREX 2008 audio tag classification task, teams ordered
according to F-measure. When a team has multiple entries, only the best entry
is reported. For more details, see: http://www.music-ir.org/mirex/2008/

Note on MIREX 2009 Audio Tag Classification Task

The results for MIREX 2009 were released just before this work went to press. Unfortunately,
most of the teams from 2008 did not resubmit, but we can look at the results on the MajorMiner
dataset, the same one used in 2008. Summarized results are shown in Table 4.

Team F-measure
Lo et al., Taiwan (2009) 0.31
Tzanetakis, CAN (2009) 0.29
UCSD (2008) 0.28
Columbia (2008) 0.26
University of Montreal (2008) 0.19

Table 4: Winning entries from MIREX 2008 and MIREX 2009 audio tag classification task,

teams ordered according to F-measure on the “major minor” dataset. When a team
has multiple entries, only the best entry is reported. For more details, see:

http://www.music-ir.org/mirex/2009/

As we can see from the F-measure, the accuracy of the systems are improving. Lo et al. (2009) used an
ensemble classifier, something similar to boosting. Tzanetakis (2009) used two layers of SVM, one to
learn each tag independently, and a second to take advantage of the correlations between tags. The
detailed results from 2008 and 2009 are available on the MIREX website.

FUTURE RESEARCH DIRECTIONS

Automatic tagging of audio, and automatic tagging of multimedia in general, are active research
fields and research directions are numerous. We want to highlight two improvements that we hope to see



in the next five years, namely the use of large and scalable algorithms, and the proper handling of sparse
coding.

The future of audio and machine learning belongs to a fast online learning algorithm. The audio
data is accessible, and so is metadata (tags for instance). The possibilities offered by such an amount of
information are endless. From a machine learning point of view, we can describe any manifold that holds
meaningful information, e.g. the subspace of scary audio sounds. From an industry point of view, we are
able to spot any new trends or peculiar taste that might develop among listeners. The only problem is that
we can not currently synthesize so much data. The perfect algorithm should be online because no matter
how cheap memory gets, we will never be able to store everything in main memory at once. The perfect
algorithm should be fast for obvious reasons, and being online helps. Let us add something there, the
perfect algorithm will probably be simple, and its low complexity will be balanced by the quantity of data
seen. Low memory usage, fast, and simple, it should be pure gain for developers, and it is made possible
by the enormous amounts of data online.

On a more signal processing aspect, we are looking forward to an algorithm that will handle
correctly sparse encodings, especially encodings performed in the time domain. As it is convincingly
exposed in (Smith & Lewicki, 2005; Smith & Lewicki, 2006), frame-based audio features have inherent
limitations, namely the frequency accuracy / time accuracy trade-off. Note that developing “sparse
algorithms” is a general trend in machine learning research in the recent years. The recent work done by
Weinstein and Moreno (2007) on audio fingerprinting is a good example of a successful application of
sparse coding.

CONCLUSION

We described automatic tagging algorithms for audio as a set of four components, and we
presented the state-of-the-art in each of these components. We also presented three successful
implementation that have been published and that performed well at MIREX. Finally, we emphasize the
current trend toward large-scale data, and explained why algorithms that handle such data should be
investigated. In accordance with the goal of this paper, we presented an overview of the existing models
and gave the appropriate pointers and references needed by a researcher trying to develop his own
approach.

Automatic tagging is a step towards a better understanding of music by machines. One road map
to achieve this goal consists of two steps: describing audio with meaningful labels, and using these labels
to manage and discover new products. The second step has been intensively developed by web search
engines, and it is the greatest incentive to create a good automatic tagging algorithm.
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Music Information Retrieval Evaluation eXchange (MIREX)

KEY TERMS & DEFINITIONS (SUBHEAD 1 STYLE)

(Please refer to author checklist to see if this applies to your submission)

Keyword: Definition of Keyword.

You are requested to provide 7-10 key terms related to the topic of your chapter and provide clear and
concise definitions (in your own words) for each term. Place your terms and definitions after the
references section of your chapter.

Machine learning: linked to artificial intelligence, machine learning is a science discipline that is
concerned with functions that can algorithmically predict an output based on some data.

Social tags: a user-generated keyword associated with some resource, in our case audio.

Automatic tagging: the use of a machine learning algorithm to apply a tag to some resource.
Feature: a descriptor of some resource, e.g. beats per minute for a music performance.

Music Information Retrieval Evaluation eXchange (MIREX): a set of contests held each year at
the ISMIR conference

Evaluation: in our case, some measure of how well a particular tag applies to some audio.

Recommendation: the process of suggesting a new and relevant resource to some user.



